	Specifications	
Introduction	General	
	Operating Temperature	0 to 49 degrees C 32 to 120 degrees F
The 4090-9007 IDNet Addressable Signal Individual Adapter Module (Signal IAM) is an IDNet-compatible peripheral that combines both Class A	Operating Humidity	Up to 93% relative humidity (non condensing)
(Style Z) and Class B (Style Y) Notification Appliance Circuit (NAC)	Mounting	
functionality into a single device. The Signal IAM supervises and operates $24-V D C$ NACs and $25-V R M S$ or $70.7-V R M S$ speakers. The Signal IAM	Dimensions	$\begin{aligned} & \text { Width }=4.13 \text { in }(10.5 \mathrm{~cm}) \\ & \text { Height }=4 \text { in }(10.2 \mathrm{~cm}) \\ & \text { Depth }=1.38 \text { in }(3.5 \mathrm{~cm}) \end{aligned}$
	Back Box	4 in (10.2 cm) square box
Powered from an IDNet-compatible (addressable loop) channel, the Signal IAM provides a supervised, addressable interface between conventional notification appliances and the host FACP (see pages 4 and 5). The Signal IAM requires a supervised power supply or compatible signal input for driving the externally connected NAC appliances. Address DIP Switch	Addressable Loop Power	
	Nominal Terminal Input	35 VDC
		Unit Load
	Device consumes 2 device loads on the addressable loop.	

In this Document

Signal IAM Address Setting 2
Wiring.. 3
Mounting .. 6

LED1. Steadily On when module is in alarm or relays are energized

Figure 1 The Signal IAM
Before you handle any equipment, read the warnings on the back page.
Signal IAM installation consists of three parts:

- Setting the Signal IAM's address
- Wiring
- Mounting

This publication contains instructions for all three installation parts.

Signal IAM Address Setting

Note: The IDNet channel (4007ES, 4010, 4010ES, 4100U, and $4100 E S$) supports address codes 1 through 250 . The 4008 supports address codes 1 through 200. The MAPNET II channel (4100,4120 , or 4020 FACP) supports address codes 1 through 127.

DIP switch position 1 is the least significant bit (LSB) and position 8 is the most significant bit (MSB). Set the IAMs address using Figure 2 as a reference. Use a small screwdriver or pen to set the switches. The device address for the Supervised IAM should be written on the resealable label, this information provides an aid in troubleshooting the system.
Note: DIP switch in " 1 " position is "ON" while DIP switch in " 0 " position is "OFF".

Each Signal IAM has a unique address. The address of the IAM is set via an eight position DIP switch (Figure 2),

MAPNET II supports address codes 1 through 127 only.
RESERVED FOR FUTURE USE

Figure 2 Signal IAM Address Setting

Wiring

Note: Ensure that cable shields will not ground when closing the box. Use shrink tubing or high grade electrical tape to cover bare shield.

The Signal IAM provides two terminal blocks, which are described in Tables 1 and 2, below. All terminal blocks accept 12-18 AWG wire.

Table 1 TB1 Terminations

Position	Label	Description
TB1-1	+ADDR LOOP	+IDNet input (pass-through, if required)
TB1-2	-ADDR LOOP	-IDNet input (pass-through, if required)
TB1-3	ADDR LOOP SHIELD	IDNet shield
TB1-4	-SIGNAL IN	-Signal IN for audio or 0 V input for Strobes, Horns, etc.
TB1-5	+SIGNAL IN	+Signal IN for audio or +24 V input for Strobes, Horns, etc.
TB1-6	SIGNAL IN SHIELD	Input signal shield for audio applications

Table 2 TB2 Terminations

Position	Label	Description
TB2-1	SIGNAL SHIELD	SIGNAL OUT/RETURN shield for audio applications
TB2-2	+SIGNAL OUT	+ SIGNAL OUT -- Class B operation
TB2-3	-SIGNAL OUT	- SIGNAL OUT -- Class B operation
TB2-4	+SIGNAL RETURN	+ SIGNAL RETURN -- Class A operation
TB2-5	-SIGNAL RETURN	- SIGNAL RETURN -- Class A operation

Use the following two pages to wire the Signal IAM.

$\stackrel{\rightharpoonup}{\omega}$
$\stackrel{\rightharpoonup}{\omega} \stackrel{ }{N}=$
 5．Audio and speaker lines must be 18 AWG（minimum）twisted pair．

 NOTE：WIRING DISTANCES ARE RESTRICTED

DUE TO DC SUPERVISION LIMITATIONS． | 25 VRMS Power | | $\begin{array}{c}\text { Maximum Distance in Feet } \\ \text {（w／max loss of } 3 \text { DB at last speaker）}\end{array}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Applied | Actual | 18 | 16 | | |
| AWG | AWG | AWG | AWG | | |
| 10 W | 5 W | 1600 | 2000 | 2000 | 2000 |

0001	0001	0001	008	M S	MOL
$\begin{gathered} \text { OMV } \\ \mathrm{ZL} \end{gathered}$	$\underset{\downarrow l}{\text { OMV }}$	$\begin{gathered} \text { פMV } \\ 91 \end{gathered}$	$\begin{gathered} \text { OMV } \\ 8 \mathrm{~L} \\ \hline \end{gathered}$	Iセnıo	pe！！${ }^{\text {d }}$ V \forall
 				ләMOd SWy	

$000 Z$	0002	0002	$000 Z$	M SI	M 08
$\underset{\mathrm{ZL}}{9 M \forall}$	$\underset{\forall 1}{\text { OM }}$	$\begin{gathered} \text { 9M甘 } \\ 91 \end{gathered}$	$\underset{8 \mathrm{l}}{9 \mathrm{MV}}$	IEn！${ }^{\text {P }}$	pe！！ $1 d \forall$
 				ләмOd SWY＾ 02	

0001	0001	0001	0001	M ¢＇＇9	M 9ε
$\begin{gathered} \text { OMV } \\ \mathrm{ZL} \\ \hline \end{gathered}$	$\underset{\downarrow \downarrow}{\substack{\text { OMV } \\ \dagger 1}}$	$\begin{gathered} \text { 9MV } \\ 91 \end{gathered}$	$\begin{gathered} 9 M \forall \\ 81 \\ \hline \end{gathered}$	Iセnıov	pe！ldd \forall
（łəyeads łsel łe ga \＆fo ssol xem／M） 				ләмоd SWyヘ 02	

$\stackrel{\rightharpoonup}{\infty}$
$\stackrel{\rightharpoonup}{\hat{N}} \stackrel{\rightharpoonup}{\circ}$

 -allowing restrictions.

- Metal conduit with end-to-end length limited to 20 ft , or
$-4905-9938$ Sync Control Module, Signal IAM and inter Module (SCM), the Signal IAM must adhere to one of the
following restrictions: When the Signal IAM is used with the $4905-9938$ Sync Control
Module (SCM), the Signal IAM must adhere to one of the
$\begin{aligned} & \text { be installed at each building exit/entrance. Each 2081-9044 adds } 6 \\ & \text { Ohms resistance, and significantly reduces wiring distance. Each }\end{aligned}$

$\stackrel{\rightharpoonup}{\circ}$
 l! ed pots!̣t

: \forall sselo ‘səoueıs!p бu!u!м $\supset \forall N$

Mounting

To mount the Signal IAM,

1. Use two number 6 screws (not supplied) to fasten the Signal IAM assembly to the extension ring or back
box. An extension ring should be used if conductors do not fit easily in the back box.
2. Use four number 6 screws to fasten the cover to the Signal IAM assembly. Covers used depend on the application, as shown below.

Figure 3 Signal IAM Mounting
DO NOT INSTALL ANY SIMPLEX ${ }^{\circledR}$ PRODUCT THAT APPEARS DAMAGED. Upon unpacking your product, inspect the contents of the carton for shipping damage. If damage is apparent, immediately file a claim with the carrier and notify an authorized Simplex product supplier.

ELECTRICAL HAZARD - Disconnect electrical field power when making any internal adjustments or repairs. All repairs should be performed by a representative or authorized agent of your local Simplex product supplier.

STATIC HAZARD - Static electricity can damage components. Handle as follows:

1. Ground yourself before opening or installing components.
2. Keep uninstalled components wrapped in anti-static material at all times.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

